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Planar Dynamics of Flexible Manipulators
with Slewing Deployable Links
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Space manipulators present several features uncommon to ground-based robots: They are highly flexible, are
often mobile, and have a degree of redundancy. As space robots become more complex, efficient algorithms are
required for their simulation and control. The present study uses an order N algorithm, based on the Lagrangian
approach and velocity transformations, to simulate the planar dynamics of an erbiting manipulator with arbitrary
number of slewing and deployable flexible links. The relatively general formulation accounts for interactions
between orbital, librational, slewing, deployment, and vibrational degrees of freedom and, thus, is applicable to
a large class of manipulator systems of contemporary interest. A parametric analysis of the system dynamics
suggests significant coupling between the rigid-body motion and structural vibrations. Obviously, this would affect
the manipulator’s performance. A nonlinear controller based on the feedback linearization technique is developed

to regulate the rigid degrees of freedom.

Nomenclature

D; = vector describing the position of F; relative to Fy

d; = translation of the frame F; from the tip of the
(ith— 1) body

dm; = mass of the infinitesimal element located on the ith
body

EA;, EI; = structural stiffness of the ith body in the
longitudinal and transverse directions, respectively

e; = displacement of F; due to bending of the (ith — 1)
body

F = vector containing the forcing terms associated
with centrifugal, Coriolis, gravitational, and
elastic forces

F; = reference frame attached to the ith body

F = inertial reference frame

fi = displacement of the mass element located at r;
due to structural flexibility

I = g X a identity matrix

K; = torsional stiffness of the ith joint

K, . K, = position and velocity gain matrices, respectively

L = length of the ith body _

MM = coupled and decoupled system mass matrices,
respectively

m; = mass of the ith body

N = number of bodies considered in a given study

O(N) = order N

o = vector containing the controlled components of ¢

q = set of generalized coordinates leading to the

coupled mass matrix M
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q = set of generalized coordinates leading to the
decoupled mass matrix M

q. = vector containing the controlled components of g
Q4 = desired values for g,
qs = vector containing the specified components of g
R,RC,R" = transformation matrices relating § and §
r; = position vector of the elemental mass dm; with
respect to F;
Ty = distance of the platform’s center of mass from the
inertial reference frame K,
T; = matrix describing the rotation of F; relative to Fy
u = vector containing the control inputs
Ui, v = longitudinal and transverse components of f;,
respectively
Xi, ¥i = Cartesian components of r;
o; = controlled rotation of F;
Bi = rotation of F; due to the elastic deformation
of joint {
o; = vector of time-dependent generalized coordinates
describing the elastic deformation of the ith body
n; = inertial orientation of the ith actuator rotor
0 = true anomaly of the system
A = vector containing the Lagrange multipliers
& = rotation of F; due to bending of body { — 1
P, = matrix containing admissible shape functions
for the ith body
¥ = angle describing the orientation of F; relative to F
Superscripts
= total differentiation with respect to time
T = transpose of the matrix

I. Introduction

PACE robotic systems, such as the remote manipulator system
on the Space Shuttle, can be used for a variety of purposes in-
cluding the deployment, retrieval, inspection, construction, repair,
and maintenance of satellites, space stations, and experimental pay-
loads. They can also serve as platforms for astronauts during extrave-
hicular activities and can assist in docking maneuvers, for instance,

between a Space Shuttle and an orbiting platform.
Space manipulators, as well as large flexible space structures in
general, have unveiled 2 new and challenging field of dynamics and



CARON ET AL. 573

control. As robotic manipulators are slowly gaining importance in
space operations, understanding the dynamics and control of large
flexible structures capable of varying their geometric configuration
is also receiving more attention. Over the years, a large body of
literature has evolved, which has been reviewed quite effectively by
anumber of authors including Meirovitch and Kwak,! Modi,> Modi
and Shrivastava,® and Nagata et al.*

Space manipulators are significantly different from their ground-
based counterparts®: They are not attached to a fixed base but are
supported by an orbiting platform. The dynamics of the manipu-
lator and the supporting base are coupled. This is usually unde-
sirable; however, it can be used to advantage in attitude control
of the platform.® Other key differences inctude the highly flexible
character of the links on space-based manipulators, as well as large
payload-to-manipulator mass ratios. This may lead to significant
structural vibrations. Furthermore, presence of redundancy is often
desirable to cope with partial failure or obstacles in the path of the
manipulator. The redundancy can also be used, quite effectively,
in isolating the dynamics of the platform from the disturbances
induced by manipulator maneuvers.” The equations governing the
dynamics of the robotic systems just described are highly nonlinear,
nonautonomous, and coupled and can be expressed in the general
form

Mg, g+ F(g,q,1)=0@4.q.1) 0))

where M(q, ) is the system mass matrix; F(q, g, t) contains the
terms associated with the centrifugal, Coriolis, gravitational, and
elastic forces; and Q(g, g, t) represents nonconservative generalized
forces, including the control inputs.

Equation (1) describes the inverse dynamics of the system. For
simulations, forward dynamics of the system is required, and Eq. (1)
must be solved for ¢,

§=M"'Q-F) 2

The solution of these equations of motion generally requires O(N?)
arithmetic operations, where N represents the number of bodies
considered in a study. In other words, the number of computations
required by an O(N?3) algorithm will vary with the cube of the
number of bodies. Clearly, the computational cost can become pro-
hibitive for a large N. Hence, development of an O(N) algorithm,
where the number of arithmetic operations increases linearly with
the number of bodies in the system, has been the focus of several
studies in the field of multibody dynamics.*~!* Such algorithms
reduce the computational time and memory requirements consider-
ably, making real-time applications possible.

The Newton-Euler formulation has been used extensively in the
past for ground-based robots.? It is inherently of O (N), and the com-
putational efficiency has made it an attractive choice for dynamical
simulation studies and control of robots. Although the traditional
Lagrange formulation is of @(N*), Hollerbach® has proposed a re-
cursive O(N) Lagrangian formulation for the inverse dynamics of
rigid-multibody systems. It is not as efficient as its Newton-Euler
counterpart, yet it makes real-time applications possible with the
Lagrangian approach. It should be noted that the forward dynamics
of the same model is not of O(N). Keat'" has used a velocity trans-
formation approach to obtain an O(N) algorithm describing the
dynamics of flexible-multibody systems. Rosenthal!! has based his
O(N) formulation, which considers rigid bodies, on Kane’s equa-
tions. Jain and Rodriguez!? use the filtering and smoothing approach
of optimal estimation and have introduced spatial operators to obtain
a recursive O(N) formulation for flexible-multibody systems.

Most O(N) formulations reported in the literature are recursive:
They rely on a series of forward and backward passes along the
chain of bodies to compute the accelerations and forces in the sys-
tem. However, Kurdila et al.'* have proposed a nonrecursive formu-
lation, based on the range space method, which has its basis in finite
element solution procedures. The main advantage of a nonrecursive
formulation is that the computations for each body can be executed
independently, making it suitable for parallel processing. Pradhan
et al.'* have introduced another nonrecursive formulation procedure
for flexible-multibody systems, which uses the Lagrangian approach

mobile base
space platform

/I
L=~ system in
orbital motion

manipulator joint

“~._slewing/deploying
manipulator unit

payload

Fig.1 Schematic diagram of a mobile flexible deployable manipulator,
based on a space platform, considered for study.

in conjunction with two velocity transformations. The velocity trans-
forms decompose the system mass matrix into a product of matrices.
The inversion of this new form of the mass matrix is computation-
ally far less intensive. As most arithmetic operations in Eq. (2) arise
from the inversion of the mass matrix, the resulting algorithm is of
O(N) and, hence, considerably more efficient.

In the present investigation, an efficient mathematical model is
developed for studying the in-plane dynamics and control of a gen-
eral, flexible, space-based manipulator (Fig. 1). The governing equa-
tions of motion for this system are derived using the O(N) approach
mentioned.!* The formulation is extended to include cases where
the length of each body is taken as a generalized coordinate and to
account for flexible joints. Thus, the mathematical model and the
associated computer code represent versatile tools for the dynamical
study and, more importantly, in the development of control strategies
for flexible space manipulators.!> A parametric study illustrates the
effectiveness of the approach in tackling representative problems of
contemporary interest. Finally, the performance of a nonlinear con-
trol strategy, based on the feedback linearization technique (FLT),
is assessed in regulating this class of systems.'®

II. Description of the System

The general nature of the model presented here allows for se-
rial manipulators consisting of an arbitrary number N of flexible,
slewing, and deployable units (Fig. 1). The formulation provides
for arbitrary variation of geometric, inertia, and stiffness character-
istics along the manipulator. In the present study, manipulator units
are assumed to be interconnected through revolute joints. However,
combinations of revolute and prismatic joints can also be considered.
The model accounts for flexibility and dissipation at the manipula-
tor joints. The manipulator is taken to be located on a mobile base,
which is free to translate along an orbiting space platform. The cou-
pling effects between the orbital, librational, slew, deployment, and
vibrational degrees of freedom, associated with the platform and
manipulator, are also taken into account.

An essential feature of the model is the time-varying length of
each unit, with prismatic joints providing the deployment degrees
of freedom. In other words, each of the manipulator units can be
deployed and retrieved independently, thereby changing the libra-
tional and vibrational characteristics of the overall system. Thus,
the manipulator units consist of two telescopic links, each with its
own spatially varying properties. Note, the model considered here
is rather general and is applicable to a large class of mobile flexi-
ble manipulators based on an orbiting space platform.’>A number
of studies reported in the literature become particular cases of the
present model.!”

Because they are relatively small, the elastic deformations of
the manipulator and platform are discretized using assumed modes
for each component of the system.!® Deformation of the ith body
is expressed as the product of spatially varying admissible shape
functions ®; and time-dependent generalized coordinates 6;. Thus,
the elastic displacement of the ith body can be expressed as

Ui q)ix 0 8ix ®.6 3)
Vi - 0 (D,'y 5,'), oo (
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where u; and v; are the longitudinal and transverse elastic displace-
ments, respectively, of an elemental mass located on the ith body
at r;. Similarly, the subscripts x and y refer to the longitudinal and
transverse modes of vibration, respectively. Thus, ®; € ®2*¢+9
and §; € R +9, where r and s are the number of modes considered
in the longitudinal and transverse directions, respectively. ‘

Although the formulation accounts for the longitudinal elastic
deformation, this study focuses on the transverse displacements. The
platform is assumed to behave as a free-free Euler—Bernoulli beam,
whereas the links are considered to be Euler—Bernoulli cantilever
beams with tip masses. For the transverse vibration of the ith body,
the admissible shape functions for the kth mode take the form

A X iy X
<I>,~yk(x,-, 1) = A sin( I;x,) + Ao COS(%)
i i

ki A
+ A sinh(%x’) + A cosh<+x’) @)

i i

where x; is the position along /; and the A;; and A;; depend on
boundary conditions of the ith body. It must be emphasized that,
because /; is taken as a generalized coordinate, the shape functions
vary with time.

III. Formulation of Problem
A. Kinematics of the System
The multibody system considered for study is an open chain, as
shown in Fig. 2. F, is the inertial reference frame located at the
center of mass of the Earth, and F; is the body-fixed frame attached
to the ith body. The position of an elemental mass dm;, located on
the body i, can be described with respect to the inertial reference as

Rym, = D; + Tifr; +£f:(r)} )]

where r; is the rigid component of the position vector of the elemen-
tal mass dm; in the frame F; withr; = [x;, ;)7 and f; represents the
displacement due to the flexibility of the body with f; = [u;, v;]”.
If the position and orientation of the body-fixed frames are known
relative to the inertial frame, in addition to the length and elastic
deformation of each body, the kinematics of the system is completely
described. The position of F; can be specified directly relative to the
inertial frame by D; and, similarly, its orientation by an inertial angle
¥;,as shownin Fig. 3a. Note, the rotation matrix T; can be expressed

as
T = [cos W  —sin Wi] ©

siny;  cosy;

An alternate way to describe a body-fixed frame is to define it with
respect to the previous frame. With this methodology, the frame F; is
related to the frame F; _, (Fig. 2). F; can be obtained by translating
F;_, along the length I; _ | of the (ith — 1) body and then along d;
where d; represents the translation of F; from the tip of the body
i — 1 due to a prismatic joint. Finally, F; is translated along e;,

BODY i-1

Fig. 2 Schematic diagram of a multibody system in chain topology:
coordinate frames and vectors used to define an elemental mass.

) BODY i1

b) Relative to the preceding frames

Fig.3 Orientation of body-fixed frames.

which is the displacement caused by the elastic deformation of the
(ith — 1) body. Rotation of the frame F; with respect to the frame
F; _1 has three contributions (Fig. 3b): elastic deformation of body
i — 1 in the transverse direction (§;); rotation of the actuator rotor
(o;), which corresponds to the controlled rotation of the revolute
joint; and elastic deformation of joint i (8;), which could be due, for
instance, to flexible coupling. Therefore,

Di=Di_+Ti_(i_1+d; +®_18_)) )

and

Yi=vioi+& o+ B (8)

Thus, the position of F; is expressed in terms of that of F; _,
which itself is related to the location of F;_,. This referencing
with respect to the preceding frame continues until the frame F;
is reached, which is directly described relative to the inertial frame
by D and ;. Thus,

Di=d1+ZTj_1(Ij_1+dj+&>j—15j~1) ©)
j=2
where d; = D, and ®; _; = &;_, evaluated at l; _, + d;. Note that
D, is expressed in polar coordinates
r,cos 6
oo [2520]
r,siné

where r, is the orbital radius of the first body.

For convenience, it was decided to describe explicitly the orbital
motion of the center of mass of the first body instead of that of
the center of mass of the entire system. Because the first body will
usually represent a space platform, it will normally constitute most
of the mass of the system. Hence, the center of mass of the entire
system will lie close to the platform’s center of mass. Nevertheless,
it should be emphasized that the effects of the motion of the system’s
center of mass, due to the rigid and flexible degrees of freedom of
all the bodies, are accounted for in this formulation.

Thus, two sets of generalized coordinates are available for the
complete description of the motion of the system: 4 and q. They are
defined as

61 T D,'

q:Z ni
Gg=19 | e ®™, with G=|v | en® (11)

. 5

| v | ki
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and
q: d;
9 o;
g=| B | enm with g =|y; | eR™ (12
: 8
an li

Each body is described by n, = 5 + r + s generalized coordi-
nates and the total number of degrees of freedom for the system is
n, = Nn,. Both sets have v, §;, and /; as generalized coordinates,
In the first set, where D; and n; (with n; = ¥, _ | +§; +«;) are taken
as generalized coordinates, the dynamics of each body is described
independently, without referring to adjacent bodies. Consequently,
the derivation of the kinetic and potential energies of the system
becomes quite simple. On the other hand, the constraints required
to specify some generalized coordinates can be quite complicated.
The second set, with its recursive definition of the frames, compli-
cates the derivation of the system kinetic and potential energies, but
simplifies the constraints. Therefore, the methodology consists in
deriving the system energy using the decoupled set of coordinates
defined in Eq. (11) and then converting it to the more convenient
coupled set, which is defined by Eq. (12). This can be done through
the use of the following two velocity transformations. The first ve-
locity transformation is

g=R"g (13)
where
R, O o - 0
R{‘ R, 0 --- 0
RV=|RE R} Ry, -~ O (14)
Rf Rf Rf -+~ Ry
with
T;_1S; 0 0 0 0
41 001 0 0 0
R;, = 0 0 1 0 0 (15)
0 0 0 I“*t9 0
0 0 0 0 1
B _ 1 7]
T,_S; 0 Pgiyy T;9; T,
Vi1
R = 0 0 1 @ §iv 1 16)
0 0 0 0 0
0 0 0 0 0
L 0 0 0 0 0 |
_ ) . -
T;,_\S; 0 Pgi,y T;®; T,
Vit
R,‘B: 0 0 0 0 0 an
0 0 0 0 0
0 0 0 0 0
L 0 0 0 0 0 i

s 1 0
i= Vi il

Here R¥ € 21%"»**”-Y;I_2i,R{‘,RiB e WX, g =Ti(l; +d; 1 +
e +1); I/ = j x j identity matrix; Ty, = I?; and v; 4y = &4 = 0.
The other velocity transformation can be written as

a p=| "1 18
an =1 o (18)

G =" —R"'Rq (19)

where
R, 0 O 0
0O R, 0 --- 0
R=|0 0 Ry --- O 20)
0 0 0 Ry
[0 0 0 0 0]
RE 0 0 O 0
RC — 0 R2C 0 0 0 @D
0 0 R3C 0 0
¢ 0 0 0 0_]
P 0 Pg. T:d Ti!: j|
Vi1t
|00 1 ¥ &y o
! 0 0 0 0 0
(V] 0 0 0
L0 o 0 0 0 |

Here R, R® € %™ " and R e 9imexm,

B. Kinetic Energy of the System
The total kinetic energy of the system can be written as

N
1 . .
r=> /m Rin, Ry, (23)

i=1

which can be expressed in the quadratic form

T=14"Mg (24)

where M is the n, X n, mass matrix expressed in terms of the
decoupled set of generalized coordinates

(31, o o .. o0
0O M, 0 -~ 0

M= 0 M; -~ O 25)
L0 0 0 - My

However, using the two velocity transformations described earlier,
the kinetic energy can be expressed in terms of the second set of gen-
eralized coordinates [Eq. (12)]. Therefore, making use of Eq. (13),
the kinetic energy expression takes the form

T=14"R"MR" 4 (26)
M
But using Eq. (19) one has
T =4¢" R'I" — R°T"M[I" —R°1"'R§ @7
M

where the kinetic energy of the system, as well as the mass matrix
M, are both expressed in terms of the second set of generalized
coordinates. Note that the inverse of the mass matrix, as defined in
Eq. (27), has the form

M ' =R RO~ RERT (28)

Now the matrices inverted in Eq. (28),i.e., R and M , are both block
diagonal; thus, their inversion is an O(N) process. Furthermore, the
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structure of the remaining matrices in Eq. (28) allows their multi-
plication to be also of O(N). Thus, inversion of the system mass
matrix, in terms of the second set of generalized coordinates, is now
an O(N) process.

C. Potential Energy
The total gravitational potential energy of the system can be writ-

ten as

udm; N wdm;

i i
=— —_— 29)

1_1/ Rdml Zf ID +r +fl

where u = Gm,, with G the universal gravitational constant and m,
the mass of the Earth. Because the geometrical dimensions of the or-
biting system are much smaller than the orbital radius, the integrand
was expanded binomially and terms up to the third order in D; were
retained, integrated over each body, and then summed over the num-
ber of bodies to obtain the total gravitational energy of the system.

Potential energy is also stored in the elastic deformation of the
system. The total elastic potential energy is given by

Z K3

/EA(x, (9") ;
i=1 I Xi

/El(x, ( > i (30)
i=1 5 i

where the first term represents the contribution from the deforma-
tion of the joints; the second and third terms correspond to the
elastic deformation of the platform and manipulator links in the
longitudinal and transverse directions, respectively; and §; = ¥; —

— & —;_1. Note, both EA and E I are permitted to vary along
the length of a given body.

D. Equations of Motion
The equations of motion can be obtained using the Lagrangian

procedure
J ]
) -+ =0 (3D
dr \ oq E)q oq

In the present study, @ corresponds to the torques applied by the
control momentum gyros, joint actuators, as well as forces applied
by the linear actuators responsible for link deployment. The gen-
eralized forces can also represent environmentally induced forces
resulting in thermal deformations, aerodynamic drag, solar radiation
pressure, etc.

The equations of motion can be rewritten as

. _ ag"Mgy 8V, a8V,
=M 1 M ———( -t 32
q (Q +5 " 0 94 (32)

where V, and V, are defined in Eqs. (29) and (30), respectively;
Eq. (28) is used for M, and M is as described in Eq. (26).

E. Specified Coordinates

In this study, the coordinates required to describe the system kine-
matics are taken to be generalized coordinates to make the formula-
tion as general and versatile as possible. However, it is often useful
to specify some of these generalized coordinates. For instance, in the
particular case of the manipulator studied, d; = Ofori =3,..., N.
In other words, each manipulator link is attached to the tip of the
previous link in the chain. Furthermore, cases where the length of
the units is varied in a specified manner, or where joint rotors are
locked in place at a specified angle, require the use of specified co-
ordinates. These coordinates are prescribed by constraint relations,
which are introduced in the equations of motion through Lagrange
multipliers. Therefore, when constrained, Eq. (1) takes the form

M§+F = Q% +PA (33)
where u € "™ is a vector containing the n, actuator forces and

torques, Q¢ is the matrix assigning the components of u to the actu-
ated variables (Q = Q%u), A € R is the vector containing the n,

Lagrange multipliers, and P€ is the matrix assigning the multipliers
to the constrained equations. To find the values of the Lagrange mul-
tipliers and achieve the desired constraints, Eq. (33) can be rewritten
in the form

g+F —F'u=FA (34)

where F& = M~'F, F* = M~'@“, and F* = M~'P*. Separating
the specified variables g, from the generalized ones (g,) gives

F R
I R P R

From the equation associated with the specified coordinates, the
Lagrange multipliers can be determined:

4+ F{ ~Fu=FA (36)
ie.,
A = F' (g, + F¢ — Fiu) 37

The equations of motion still retain their O(N) character, even in the
presence of constraints, as the Lagrange multipliers can be obtained
recursively.'# Thus, in the case where the jth variable is constrained
to be constant at its initial value, §s; = 0. In the case of prescribed
maneuvers, gg; is simply defined as the desired acceleration profile.
In the present study, a sine-ramp profile is adopted for prescribed
maneuvers. It assures zero velocity and acceleration at the begin-
ning and end of the maneuver, thereby reducing the structural re-
sponse of the system. The maneuver time history considered is as
follows:

q,i (1) = (Ags;/ AT — (At/27) sin[(2/ At)T]} (38)

where g,; is the constrained coordinate, Ag,; is its desired variation,
7 is the time, and At is the time required for the maneuver.

IV. Dynamical Simulations

A Fortran program was written for the dynamical simulation of
the system described in Secs. II and ITI. The acceleration vector
4 was integrated numerically using Gear’s method, which is well
suited for stiff systems of ordinary differential equations.? To re-
duce computational time during simulations, a symbolic manipula-
tion routine (MAPLE V) was used to obtain analytical expressions
for the integrals of the shape functions. Furthermore, efficient ma-
trix multiplication algorithms were developed to take advantage of
the structure of the various matrices involved.

For the numerical simulation, a space platform, supporting a mo-
bile manipulator, orbiting around the Earth was considered (Fig. 1).
The numerical data used in the analysis are summarized as fol-
lows: The orbit is circular at an altitude of 400 km with a period
of 92.5 min. The geometry of the platform is cylindrical, with axial
to transverse inertia ratio of 0.005; mass = 120,000 kg, length =
120 m, and flexural rigidity (EI,) = 5.5 x 10 Nm?2. The manlpula-
tor revolute joint mass = 20 kg, moment of inertia = 10 kg m?, and
stiffness (K) = 1 x 10* Nm/rad. The manipulator links (slewmg
and deployable) have a cylindrical geometry with axial to transverse
inertia ratio of 0.005, mass = 200 kg, length = 7.5 m, and flexural
rigidity (EI,, EI;) = 5.5 x 10° Nm?.

In the following simulations, the longitudinal elastic deformation
of the bodies is neglected, as well as the dynamics of the mobile
base. Furthermore, unless otherwise specified, the manipulator is
not supporting any payload, the platform is initially oriented along
the local vertical, i.e., ¥ = 0, and there is no energy dissipation.
Finally, as pointed out earlier, the time history of a maneuver is
described by Eq. (38).

The first case investigates the response of a one-unit manipulator
to the libration and vibration of the supporting platform (Fig. 4). As
indicated before, a manipulator unit consists of two telescopic links:
One is free to slew and supports the other, which is deployable. The
manipulator configuration, important parameters, and initial condi-
tions are also indicated on the figure. The manipulator is supporting a
400-kg-point payload and is located at the extremity of the platform.
The slew and deployment joints are both locked in positions (I; =
10m, a; = 50 deg). The platformis given an initial pitch disturbance
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Parameters: Initial Conditions:
El, = 5.5x10°Nm’ v =30°
El, = 5.5x10"Nm’ e,=1.0m
El, = 5.5x10°Nm* B,=0°
K = 1.0x10°Nm/rad e,=0.0m
Specified Coord.:
i, = 10m; &, = 50°.
Platform Libration Platform Tip Vibration
m
30.0 y 1.0
o
v e, 0.0
29.91 1
-1.0F B
0.00 0.1 0.00 0.01
Joint Vibration Tip Deflection of Unit 1
20.0+ 4 0.2 _m E
B2 e, 0.0 MWWWWWM
0.0 4 02 E
0.00 0.01 0.00 0.01
Orbit Orbit

Conservation of Enert
1.0 F)< 101%9% ]

AE
0.0 3

10| e

0.00 0.01
0 Orbit

Fig.4 Response of the one-unit manipulator to libration and vibration
of the supporting platform.

of ¥ = 30 deg and a tip deflection e, = 1 m. Figure 4 describes the
system response to these disturbances. Variation of the total energy
fthe system, expressed as a percentage of the initial total system en-
2rgy, is also shown. As can be expected for a conservative system, the
energy variation is nearly zero (of the order of 1072%), providing
confidence in the formulation and accuracy of the computer code.

Clearly, the joint, link, and platform vibrations, as well as the
system pitch librational motion, are coupled. Note, the long-period
librational response of the platform is modulated at its vibrational
frequency. The same is true with the joint response. It is apparent that
the platform dynamics has a significant influence on the manipulator
response, which now goes through slewing oscillations with an am-
plitude approaching 20 deg. Of equal concern are the manipulator’s
tip oscillations e3, which clearly show through their modulations the
effect of the platform’s librational and vibrational dynamics. Obvi-
ously, this would affect the tracking performance of the manipulator.

1t may be pointed out that the first three modes were used to
discretize vibration of the flexible members. The results showed
that, in general, use of the fundamental mode is sufficient to describe
the structural response. The second mode was found to alter the
response only slightly, and the effect of higher modes was rather
insignificant. Hence, in the following study, only the first mode is
used to represent vibration of a flexible structural member.

The second case examines the effect of link and joint flexibility
on the position of the manipulator’s end effector (Fig. 5). A five-unit
manipulator, i.e., 10 links, 5 free to slew whereas the other 5 are de-
ployable, shown in the inset, is located near the tip of the platform.
The individual revolute joints are locked in position as stated in the
legend for the diagram (specified coordinates) and so are the de-
ployable links. The platform is subjected to an initial tip deflection
of 1 m. As before, although there is a significant transfer of energy
between various degrees of freedom, the total energy is conserved.
In absence of dissipation, the platform tip oscillations progresses
undamped. Here x, represents the manipulator-tip motion parallel
to the undeformed platform, whereas y, gives the displacement in
the transverse direction, both with respect to the reference coor-
dinate frame F). To assess the effects of link and joint flexibility,
the response with a rigid-manipulator system is also included for
comparison. The results clearly show considerable influence of the
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Fig. 5 Effect of link and joint flexibility on the end-effector position
for a five-unit manipulator.

Maneuver:

Phase 1 (1= 0.000—-0.005 orbit):
o, = 180°—90°% 1, = 10-»15m;

Phase 2 (1 = 0.005-0.015 orbit):
d,=10-40m;

Phase 3 (1= 0.015—0.020 orbit):
o, =90°-0°% I, = 1510 m;

Initial Conditions:
y=0°
8, =0.0m
B,=0°
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Fig.6 System response during a complex maneuver of the one-unit ma-
nipulator, which involves slew, deployment, translation, and retrieval.

system flexibility on the position of the end effector. Obviously, this
has significant implication on the path planning.

The third case involves a three-phase maneuver with a one-unit
manipulator, which is shown in Fig. 6. The first phase (phase 1)
consists of a simultaneous rotation and deployment of the manip-
ulator unit. During the second phase (phase 2), the mobile base
translates along the platform, with the manipulator unit fully de-
ployed and perpendicular to the platform. The final phase (phase 3)
involves simultaneous rotation and retrieval of the manipulator unit.
The values for the initial conditions, joint rotations, and deployment
lengths are also indicated. The maneuver results in significant vi-
brations of the slew joint and links, which persist after the end of the
maneuver as the system damping is purposely taken to be zero. The
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Maneuver:

Phase 1 (1= 0.000—0.005 orbit):
o, = 132°-90% o, =96° »0°

Phase 2 (t = 0.005-0.015 orbit):
d,=10->40m;

Phase 3 (1 = 0.015—0.020 orbit):
o, = 90°=48°; &, = 0°—-96°;

Initial Conditions:
y=0°
e,=0.0m
B, = o
e,=0.0m
By=0°
e,=0.0m

a) Description of initial conditions and maneuver parameters
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b) Dynamical response of the system

Fig.7 Three-phase maneuver of a two-unit manipulator involving joint
rotations and translation of the mobile base.

maneuver also excites, slightly, the platform vibrational and libra-
tional degrees of freedom. Throughout the translation of the mobile
base, the manipulator unit is fully deployed, making it more flexi-
ble. This can be observed from the response of the manipulator tip:
During the translational phase of the maneuver, the lower stiffness
of the manipulator unit results in a lower frequency of vibration.
After the maneuver, the manipulator unit is partly retracted, thereby
increasing its natural frequency.

Finally, response of the system to a similar three-phase maneu-
ver, executed by a two-unit manipulator, is considered (Fig. 7). Both
units are fully retracted to their minimum length of 7.5 m and remain
so throughout the simulation. The first phase consists of simultane-
ous slewing maneuvers at both manipulator joints, until the manip-
ulator is fully extended, perpendicular to the platform. During the
second phase, the mobile base translates along the platform, with
the manipulator remaining normal to the platform. The final phase
involves simultaneous rotations at both joints, until the endpoint of
the manipulator reaches the platform. The initial conditions and the
maneuver time history are indicated in Fig. 7a, whereas the system
response is given in Fig. 7b. The larger mass of this two-unit ma-
nipulator results in a stronger response in the platform’s vibrational
and librational degrees of freedom. Note, the vibrational amplitudes
for the first joint B, and tip deflection of the first unit e; are greater
than those for the second joint B; and second unit e4. The second
unit acts on the first one as a tip mass.

V. Control

The ultimate objective of the dynamical analysis of a system is
to control its operational behavior. In other words, find the con-

trol input u that will cause the system to behave as desired. In the
present case, a controller based on the FLT'¢ is designed to regulate
the manipulator and platform rigid dynamics. This scheme effec-
tively decouples the system, linearizes it, and uses a proportional-
derivative feedback loop to achieve the desired dynamical behavior.
The FLT-based controller is designed considering a system consist-
ing of rigid bodies; however, its effectiveness is assessed using the
original, fully flexible system.
For a rigid system, Eq. (33) reduces to
M.G+F, = Q%+ P°A (39)
where the subscript r indicates that contributions from link flexibil-
ity have been removed. Substituting for A using Eq. (37), Eq. (39)
takes the form
M4+Fr=0,u 40)
where F, = F, — P°F®, (§, + F%), and @,, = Q — P°F*,'F" |
Solving for 4 gives
G=-F +Q)u 1)
where F/ = M'F, and Q) = M:'Q/, . Equation (41) can be
rewritten as

qC F;c
q“ I-?;‘u

Qldrt
e |u 42)
Q;lru

where g, and g, are the controlled and uncontrolled generalized co-
ordinates, respectively. Considering only the controlled generalized
coordinates,

qt’ = —F:L + Q:lrcu (43)
Equation (43) defines the nonlinear effects inherent in the rigid
degrees of freedom. To ensure a robust behavior of the controller,

g, is taken to have the form
4o =4, + Ko(qy —4.) +Kp(qu — q.) (44)

where g, is the desired values for g., whereas K, and K, are the
velocity and position controller gain matrices, respectively:

'k, 0 0 - 0
0 K, 0 ... 0
K,=| 0 0 Ky 0 (45)
Lo 0 o Koy
and
Ky 0 0 -0
0 Kpp O - 0
K,={ 0 0 Kj; -~ 0 (46)
L 0 0 0 K,;N

Here the diagonal elements of both matrices are scalars selected
to satisfy the prescribed requirements of settling time, maximum
permissible overshoot, etc. Equating Egs. (43) and (44) and solving
for the control input u gives
u= Q) "\F, +4,+K(d, —4) +K,(qu —a)) 4D
As pointed out earlier, only the rigid degrees of freedom are con-
trolled here. If required, one can develop an appropriate controller
to regulate flexible degrees of freedom as shown by Modi et al.!
As an example, consider a manipulator with one unit supported
by a flexible platform, as shown in Fig. 8. The platform is ini-
tially given a disturbance of 1 deg in pitch from the local horizontal
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1.C.’s (flexible d.o.f.): Controller
e,=0.0m;B,=0%e,=00m; Gains:
1.C.’s (controlled d.o.f.): K, =0.0667;
K,=0.5164.

v =-91°% o, = 50% |, = 10m;
Desired Values:
¥ =-90°% o, = 60% |, = 12m;
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a) Control inputs and response of rigid degrees of freedom

1.C.’s (flexible d.o.f.): Controller
e,=0.0m;p,=0%e,=00m; Gains:
1.C.'s (controlled d.o0.f.): K, =0.0867;
K,=0.5164.
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Fig.8 Controlled behavior of a one-unit manipulator during a 10-deg
slew and 2-m deployment in presence of an initial pitch disturbance of
1 deg.

(¢ = —90 deg), which now corresponds to the platform’s oper-
ational orientation. Note, this configuration is inherently unstable
if the attitude is left uncontrolled. Simultaneously, the manipulator
slews through 10 deg and extends its length by 2 m. For the three
control variables, i.e., platform pitch angle, joint rotation, and ma-
nipulator length, the proportional and derivative gains are selected
to yield a critically damped response g., as well as a reduction
of the position errors to 2% of their initial values in 0.004 orbit.
Figure 8a shows the control input time histories, whereas Fig. 8b
gives the system’s vibrational response. The initial conditions, de-
sired values for the controlled degrees of freedom, and the controller

gains are also given in the legend. The closed-loop response shows
the effectiveness of the FLT controller under this demanding situ-
ation. Clearly, the unmodeled dynamics of the flexible generalized
coordinates affect the performance of the controller. The response
of the three controlled variables (¢, a,, and [;) is obviously not
critically damped. However, in general, the effect of unmodeled dy-
namics is small, and the disturbance is damped in less than ﬁth
of an orbit. Even the platform tip vibration, which persists, has an
amplitude of only 0.2 mm. Obviously, the structural damping,
which is purposely not accounted for here, can easily tackle this
situation quite effectively. If necessary, one can implement a simple
linear vibration control. On the other hand, although not controlled
directly, vibration of the manipulator links and the joint are sup-
pressed through coupling between the rigid and flexible degrees of
freedom.

VI. Concluding Remarks

The paper presents a rather general formulation for studying in-
plane dynamics and control of a manipulator consisting of an arbi-
trary number of slewing as well as deployable links. The formulation
combines the Lagrangian approach with velocity transformations
leading to an O(N) algorithm. This versatile tool can be applied
to a large class of systems of contemporary interest. A parametric
study suggests coupling between the rigid-body motion and joint as
well as link vibrations. In general, the slewing and translational ma-
neuvers have significant effect on the flexible-degrees-of-freedom
response. The formulation can be used to obtain critical combina-
tions of the manipulator maneuvers and external excitations that
may lead to unacceptable response. For the particular case studied,
a controller based on the FLT, which accounts for the complete non-
linear dynamics of the system in the rigid degrees of freedom, is
found to be quite effective even in regulating the flexible degrees of
freedom through coupling. However, robustness of the controller is
an important issue and should receive further attention.
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